THE ROLE OF SURFACE CLEANLINESS IN CONTAMINATION CONTROL

Koos Agricola agricola@brookhuis.com

Brookhuis Apllied Data Intelligence

Content

- Product contamination by particles
- O Surface cleanliness
- O ISO 14644-9:2022 surface cleanliness
- Contamination control
- Particle deposition rate
- O ISO 14644-17:2021 PDR applications
- Resuspension rate
- O ISO 14644-1:2015 air cleanliness
- Monitoring

Product contamination

O Product (and/or process) contamination is surface contamination

- A product analysis helps to determine the impact of particle (microbe carrying particle) contamination on its functionality
- The acceptable number and size of surface particles can be used to determine the final surface cleanliness level SCL_{final}
- The cleaning process before an assembly process determines the initial surface cleanliness level SCL_{initial}

 The difference between final and initial surface cleanliness determines the particle contamination latitude =

Surface cleanliness

Surface cleanliness is expressed as a number of particles ≥ D µm per m², dm² or cm²
 Particle size D: equivalent diameter or diameter circumference circle around silhouette
 Measurement result N_D is expressed as cumulative number of particles per m²
 Particle size distribution after exposure to environment: N_D = constant/D
 Surface Cleanliness Level: SCL = N₁ = N_D × D

ISO 14644-9:2022 surface cleanliness

• Surface Cleanliness by Particle concentration: SCP

• SCL is the equivalent cumulative number of particles $\geq 1 \ \mu m \ per \ m^2$

● In ISO 14644-9:2022 surface cleanliness levels are expressed log₁₀ SCL

Selected SCP grading levels for cleanrooms and associated controlled environments

SCP level	Particle size									
	≥ 0,05 µm	≥ 0,1 µm	≥ 0,5 µm	≥ 1 µm	≥ 5 µm	≥ 10 µm	≥ 50 µm	≥ 100 µm	≥ 500 µm	
SCP level 1	(200)	100	20	(10)						
SCP level 2	(2 000)	1 0 0 0	200	100	(20)	(10)				
SCP level 3	(20 000)	10 000	2 000	1 000	(200)	(100)				
SCP level 4	(200 000)	100 000	20 000	10 000	2 000	1 000	(200)	(100)		
SCP level 5		1 000 000	200 000	100 000	20 000	10 000	2 000	1 000	(200)	
SCP level6		(10 000 000)	2 000 000	1 000 000	200 000	100 000	20 000	10 000	2 000	
SCP level 7				$10\ 000\ 000$	2 000 000	1 000 000	200 000	100 000	20 000	
SCP level 8						10 000 000	2 000 000	1 000 000	200 000	

Units in particles per square metre

Contamination control

Product cleanliness strategy:

when to clean and to protect the product and where to control the environment

• Measures to prevent particle contamination of critical product surface(s) during exposure

• Limiting exposure of critical product surface to environment

• Limiting particle deposition rate by air cleanliness level and removal efficiency

- Limiting introduction of particles (operation)
- Limiting surface particles by cleaning
- Monitoring air cleanliness, surface cleanliness and particle deposition rate

Particle deposition rate

O Particle Deposition Rate R_D is expressed by the number of particles $\geq D \mu m$ per m² per hour

O R_D = air cleanliness level (N_D / m^3) × deposition velocity of particles $\ge D \mu m$ in m/h

O R_D = change surface cleanliness in Ns_D/m² ÷ time of exposure in hours T

O Product contamination N_D by particles $\ge D \mu m = R_D \times A \times T$

• A = product area in m^2

O Increase of surface concentration during operation

 $SCL_T = SCL_{initial} + R_D \times D \times T$

• High surface concentration can increase the particle deposition rate by resuspension

ISO 14644-17:2021 PDR applications

• Setting limits, establish and monitor control of deposition rate of macroparticles per m²·h

• Particle deposition rate level L is equivalent number of particles $\geq 10 \ \mu m \ per \ m^{2} h$

 $L = R_D \times D/10$

	Particle dep-	Number of particles per m ² per hour								
	osition rate level	≥5 µm	≥10 µm	≥20 µm	≥50 µm	≥100 µm	≥200 µm	≥500 µm		
	1	2,0	1,0	0,5	0,2	0,1	0,05	0,02		
	10	20	10	5	2	1	0,5	0,2		
	100	200	100	50	20	10	5	2		
	1 000	2 000	1 000	500	200	100	50	20		
	10 000	20 000	10 000	5 000	2 000	1 000	500	200		
	100 000	200 000	100 000	50 000	20 000	10 000	5 000	2 000		
	1 000 000	2 000 000	1 000 000	500 000	200 000	100 000	50 000	20 000		
cle	anzone									

Particle deposition rate levels in orders of magnitude

Cumulative particle size distribution of R_D

10.000 Number of particles per m²·h 1.000 100 Ventilation Personnel Resuspension 10 1 100 10 1000 Particle size in µm

- Monitoring data

____L = 5000

Particle deposition rate distribution

Resuspension rate

- Under influence of mechanical forces and turbulent airflows particles can be lifted from a surface into the boundary layer and then resuspend into the air
- The resuspension rate differs very much due to surface condition, humidity and removal forces
- The resuspension rate r is a fraction of the surface concentration

 $r = \frac{Sr_{D}}{Ns_{D}}$

- Sr_D is the number of emitted particles/h and Ns_D is the number of particles $\geq D \ \mu m/m^2$
- **•** For analysis in cleanrooms $r = 10^{-4}$ per m² h is suggested
- A particle resuspension rate level SrL can be introduced

• SrL = $Sr_D \times D = r \times SCL$

• SrL depends on L and operational time after cleaning

ISO 14644-1:2015 air cleanliness

• Airborne particle concentration is determined by dilution of particle source strength $C = \frac{s}{\epsilon \cdot 0}$

• S is source strength (number of particles/s), Q is air supply (m^3/s) and ϵ is ventilation efficiency

O $C_{0.1}$ is cumulative concentration of particles $\geq 0.1 \ \mu m$ per m³ measured by LSAPC

ISO Class is log₁₀ C_{0.1}

ISO Class number (N)	Maximum allowable concentrations (particles/m ³) for particles equal to and greate than the considered sizes, shown below ^a							
	0,1 μm	0,2 μm	0,3 µm	0,5 μm	1 µm	5 µm		
1	10							
2	100	24	10					
3	1 000	237	102	35				
4	10 000	2 370	1 020	352	83			
5	100 000	23 700	10 200	3 520	832			
6	1 000 000	237 000	102 000	35 200	8 320	293		
7				352 000	83 200	2 930		
8				3 520 000	832 000	29 300		
9				35 200 000	8 320 000	293 000		

ISO Classes of air cleanliness by particle concentration

Particle removal by ventilation

O Particle removal depends on effective air change rate and cleanroom height

• Effective air change rate: $ACR = \frac{\varepsilon \cdot Q}{V}$ per hour

• V is room volume in m³

cleanz

Surface cleanliness requirements

• The difference between final and initial surface cleanliness determines the contamination latitude

O Particle contamination occurs by deposition during exposure and contact transfer

• Particle deposition rate limit = Contamination Latitude/maximum time of exposure

$$L \le \frac{\text{SCL}_{\text{final}} - \text{SCL}_{\text{initial}}}{10 \times \text{T}}$$

Leads to Air cleanliness limit (D < 40 μm) and requirements for operations
 Surface cleanliness limit ~ < 0.1 × (SCL_{final} – SCL_{initial}) ÷ number of contacts
 Depends on transfer efficiency, here the average value 10 %

Relation air cleanliness and surface cleanliness

O Removal of airborne particles decreases rapidly with particle size for particles $\geq 5 \ \mu m$

• Surface cleanliness changes by particle deposition rate

- **•** $C_5 < R_5^{1.294}/295$ for $5 \le D < 40 \ \mu m$
 - **(b** $D \ge 40 \ \mu m$ operational procedures

Example: L \leq 5.000 -> C₅ \leq 208 particles \geq 5 μ m ~ ISO 6

Cleaning frequency

O Determined by maximum surface cleanliness level SCL_{max} and particle deposition rate level L

• SCL_{max} is determined by contact transfer and

• the impact of resuspension rate level SrL

• SCL = SCL_{after cleaning} + $10 \times L \times T$

 Surface cleanliness level after manual cleaning can be about 25.000 (ISO SCP 4.4) ± 50 %

• Time between cleanings: $T_{max} = \frac{SCL_{max} - SCL_{after cleaning}}{10 \times L}$

• Cleaning frequency = T_{max} ÷ operational hours per day

6

Monitoring surface cleanliness

Measure surface cleanliness of various environmental surfaces
Trending, cleaning efficiency and particle deposition rate

• Next to measuring airborne concentration of particles

• Particle deposition rate level at critical locations

Map of cleanroom with surface measurement locations on the floor, tables and equipment.

New monitoring instruments

• SUMON is meant for monitoring cleanroom surfaces

Ο counts and measures fluorescent particles > 20 μm

• measurement area 10 cm²

• can collect 100 samples

o gives trending,

• calculates cleaning efficiency and

• Particle Deposition Rate

New monitoring instruments

• Real time particle deposition monitor APMON II

• Sample time 4 minutes

• Measurement area 50 cm²

O Particles > 15 µm

• Data access via AWS

INSIGHTS

Conclusion

• Traditionally focus on air cleanliness for particles $\ge 0.5 \ \mu m$

• In cleanrooms with personnel the control of macroparticles is important

• Their removal by airflow decreases with particle size

• Deposition over time increases contact transfer and resuspension

• Monitoring particle deposition rate at critical locations demonstrates level of contamination control

• It shows the impact of discipline and surface cleanliness (resuspension of visible particles)

• Monitoring surface cleanliness provides information on the operational quality and effectiveness of the cleaning program

Thank you for your attention

HAVE YOU PUT YOUR DATA TO WORK?

<u>www.brookhuis.com/cleanroom</u>

